학과소개

학과소개

  1. 학과소개
  2. 인사말
  3. 교과과정
  4. 학과규정모음
  5. 졸업요건
  6. 졸업후진로
  7. 오시는길

대학원

 
 
▷공통분야
 
21602768 실해석학(Real Analysis)
실함수론의기본적인이론을공부한다. Lebesgue측도, Lusin정리, Egoroff정리, 실함수의적
분과미분, 적분의수렴정리, 절대연속, Jensen부등식, LP-공간, Hölder 부등식, Riesz표현정
, Banach공간, Hahn-Banach정리, Closed Graph정리, Open Mapping정리, 균등유계정리,
Alaoglu정리, Krein-Milman정리.
 
21602769 실해석학(Real Analysis)
실해석학Ⅰ의연속으로서일반측도론을공부한다, 측도공간, 수렴정리, Hahn분해정리,
Radon-Nikodym정리, Fubini정리, Borel측도, Haar측도, Daniell적분.
 
21602770 복소수함수론(Complex Analysis)
일변수복소함수론의기본적인개념을공부한다. 해석함수와그기본적인성질, Cauchy의
적분정리, Schwarz의보조정리와 Maximum Modulus 정리, Runge정리, Mittag-Leffler 및
Weierstrass정리, Conformal mapping의기본성질과 Riemann사상정리, Jensen공식, Blashke
Product, Harmonic함수와 Subhamonic함수, Hardy공간.
 
21602771 일반위상수학(General Topology)
위상공간과연속함수, Countability와분리공식, 공간의덮개, 위상공간에서의거리화, Filter
의수렴, Compactness와 Compactification. Connectedness, Uniform공간, 함수공간, 완비공
간과완비화, Homotopy와 Isotopy.
 
21602772 일반위상수학(General Topology)
일반위상수학Ⅰ의계속과정으로내용을심화시킨다.
 
21602773 현대대수학(Abstract Algebra)
군론, 환론, 정역, 체론, Vector공간, Module, 선형변환, Automorphisms, 가환군의자기준동
형사상의환, 복선형대수, Galois이론
 
21602774 현대대수학(Abstract Algebra)
현대대수학Ⅰ의계속과정으로내용을심화시킨다.
 
21602775 미분기하학(Differential Geometry)
Tensors, Riemann Metric, 미분형식, 곡률, Torsion, Covariant Derivatives, Connection Form,
측지선, 곡선의합동, 곡면상의 Gaussian Curvature.
 
21602776 미분기하학(Differential Geometry)
미분기하학Ⅰ의계속과정으로내용을심화시킨다.
 
 
 
▷해석학(Analysis)분야
 
21602779 함수해석학(Functional Analysis)
해석학적인문제의위상및대수적인구조를분석하여연구하는기본적인이론을공부한다.
위상벡터공간, 국소볼록공간, Hilbert공간, Banach공간, BanachSteinhaus정리,
HahnBanach
정리, 쌍대공간, 약위상, Alaoglu정리, Stone-Weierstrass정리, Krein-Smulian정리.
 
21602780 함수해석학(Functional Analysis)
함수해석학Ⅰ의연속으로서보다확장되고심화된이론을공부한다. Banach대수, 가환
Banach대수, C*-대수, Spectrum정리, Fredholm정리, 작용소, 비유계작용소.
 
21602781 다변수복소수함수론(Functions of Several Complex Variables)
다변수복소함수의기본적이론을공부한다. 다변수해석함수의정의, 적분공식, Subharmonic
함수, Hartog정리, Domain of Holomorphy, Pseudo-convexity. Type 개념, Edge of the Wedge정리,
코시-리이만방정식, 접코시-리이만방정식, Automorphism, Cartan 정리, 해석함수의영, Siegel
공간에서의해석학, Szego와 Bergmann 변환, Hardy공간.
 
21602782 다변수복소수함수론(Functions of Several Complex Variables)
다변수복소수함수론Ⅰ의계속과정.
 
21602783 복소다양체론(Complex Manifolds)
복소벡터속이론, 복소벡터속상의접속이론, 복소다양체상의조화함수론, 복소구조의
변형이론.
 
21602784 작용소이론(Operator Theory)
Hilbert 공간및 Banach 공간위의작용소에대한기본적인이론을공부한다. Banach 공간
위의작용소, Banach-Stone정리, Compact작용소, Hilbert공간위의작용소, Adjoint작용소,
Normal작용소, 작용소의 Spectrum이론, Hilbert-Schmidt정리.
 
21602785 작용소이론 Ⅱ(Operator TheoryⅡ)
작용소이론Ⅰ의연속으로서 C*-대수및 Von Neumann대수의기본적인이론을공부한다.
Banach 대수, C*대수,
Spectrum, Gelfand표현, 작용소대수, Density정리, 쌍대공간 , Tensor곱.
 
21602786 상미분방정식론(Theory of Ordinary Differential Equations)
상미분방정식의기본이론을공부한다. 벡터장과페이즈흐름, 해의존재정리, 해의유일성,
Picard의반복근사법, 선형미분방정식, 고립특이점을가진선형연립방정식.
 
21602787 상미분방정식론(Theory of Ordinary Differential Equations)
상미분방정식Ⅰ의계속과정.
 
21602788 편미분방정식론(Theory of Partial Differential Equations)
편미분방정식의기본적인이론을공부한다. Cauchy-Kovalevski정리, 국소존재이론, 조화함
, 라플라스방정식의 Dirichlet 및 Neumann문제, Single 및 Double Layer Potentials, 열방정
, 파동방정식, Sobolev공간, 타원형방정식이론-존재성및정칙성연구.
 
21602789 편미분방정식론(Theory of Partial Differential Equations)
편미분방정식론Ⅰ의계속과정.
 
21602790 조화해석학(Harmonic Analysis)
특이적분작용소이론을중심으로조화해석학의현대적이론을공부한다. 특이적분작용소의
정의와응용, Calderon-Zygmund이론, Whitney분해, Littlewood-Paley이론, Cauchy변환의연속성, BMO와 Carleson 측도, Paraproduct, T(1)정리, Homogeneous type공간, Multiplier 이론,
Haar체계.
 
21602791 조화해석학(Harmonic Analysis)
조화해석학Ⅰ의계속과정.
 
21602792 해석학특강(Topics in Analysis)
해석학분야의보다수준높은과제를담당교수가선정하여공부한다. Ergodic이론,
Distribution 이론, Uniform 대수, 비선형함수해석학등.
 
21602793 해석학특강(Topics in Analysis)
해석학특강Ⅰ의계속과정.
 
21602795 해석학특강(Topics in Analysis)
해석학특강Ⅱ의계속과정.
 
21602796 해석학특강(Topics in Analysis)
해석학특강Ⅲ의계속과정.
 
21602797 해석학세미나(Seminar in Analysis)
학위논문작성을위하여논문의주제와관련되는분야를연구한다.
 
21602798 해석학세미나(Seminar in Analysis)
해석학세미나Ⅰ의계속과정.
 
 
 
▷위상수학(Topology)분야
 
21602799 대수적위상수학(Algebraic Topology)
단체, 복체와다면체, Homology군, 단체적사상과근사, Homology 군의불변성, Homotopy
사상, Cylinder구성, 부동점정리, 쌍대성.
 
21602800 대수적위상수학(Algebraic Topology)
대수적위상수학Ⅰ의계속과정.
 
21602801 미분위상수학(Differential Toplogy)
미분가능다양체, Immersion과 Embedding, Vector Bundle, Morse 함수, S-Cobordism 정리.
Cobordism과 Surgery.
 
21602802 미분위상수학(Differential Toplogy)
미분위상수학Ⅰ의계속과정.
 
21602803 호모토피론(Homotopy Theory)
Category, 기본군, Homotopy군, CW-복체, 극한, Homology 및 Cohomology군.
 
21602804 위상군론(Topological Groups)
위상군, 국소Compact군, Lie군, 변환군.
 
21602805 위상군론(Topological Groups)
위상군론Ⅰ의계속과정
 
21602806 위상수학특강(Topics in Topology)
위상수학중에서새롭고특수문제가된주제에관해연구한다.
 
21602807 위상수학특강(Topics in Topology)
위상수학특강Ⅰ에서의내용을보다심화하여현대수학의새로운문제를연구한다.
 
21602809 위상수학특강(Topics in Topology)
위상수학특강Ⅱ의계속과정.
 
21602810 위상수학특강(Topics in Topology)
위상수학특강Ⅲ의계속과정.
 
21602811 위상수학세미나(Seminar in Topology)
학위논문작성을위하여논문의주제와관련되는분야를연구한다.
 
21602812 위상수학세미나(Seminar in Topology)
위상수학세미나Ⅰ의계속과정.
 
 
 
▷대수학(Algebra)분야
 
21602813 호모로지대수(Homology Algebra)
환위에서의 Module, Module의준동형사상과 Tensor곱, Torsion곱, Torsion Functor와 Extension
Functor, Homology적차원.
 
21602814 군론(Group Theory)
군의구조, 가환군, Sylow 정리, Group action on a set, Group Presentations, Free groups.
 
21602815 환론(Ring Theory)
Integral domain, 가환환에서의 Ideal의이론, 비가환환의구조, Factorization.
 
21602816 체론(Field Theory)
유한체, 유한차원의확대체, Galois의이론, 대수적확대체, 체의구조론, Artin-Schreir 이론.
 
21602817 리이대수 Ⅰ(Lie AlgebraⅠ)
Engel의정리, Lie의정리, 리이대수의 Root System과 Cartan Decomposition, Weight 공간,
Weyl group, Exceptional Lie Algebra, Dynkin Diagram등의리이대수의표현론을연구한다.
 
21602818 리이대수(Lie Algebra)
리이대수 Ⅰ의연속으로최근결과및특수분야를연구한다.
 
21602819 격자론(Lattice Theory)
가환격자, Modular격자, Orthomodular격자, Hilbert격자. 합동과 Ideal, 차원이론, 격자의방
정식종류.
 
21602820 격자론(Lattice Theory )
격자론 Ⅰ의계속과정.
 
21602821 대수적정수론(Algebraic Number Theory)
Dedekind환, Locally Compact Field, Brower군등을다룬다.
 
21602822 대수학특강(Topics in Algebra)
대수학분야의최근연구논문을고찰, 최신연구동향을알아본다.
 
21602823 대수학특강(Topics in Algebra)
대수학분야Ⅰ의계속과정.
 
21602825 대수학특강(Topics in Algebra)
대수학분야Ⅱ의계속과정.
 
21602826 대수학특강(Topics in Algebra )
대수학분야Ⅲ의계속과정.
 
21602827 대수학세미나(Seminar in Algebra)
학위논문작성을위하여논문의주제와관련되는분야를연구한다.
 
21602828 대수학세미나(Seminar in Algebra)
대수학세미나Ⅰ의계속과정.
 
 
▷응용수학(Applied Mathematics)분야
 
21602872 고급수치해석학(Advanced Numerical Analysis)
학부에서배운기초수치해석학을심도있게배운다. 그내용으로는 Numerical solution of
dynamical systems, Stability analysis and bifurcation diagram, Computations of ei genvalues
and eigenvectors, Strange attractors and chaos, Interpolation and approxi mation 등이다.
 
21602874 고급수치해석학(Advanced Numerical Analysis)
고급수치해석학Ⅰ의내용을계속공부한다.
 
21602857 수치적편미분방정식(Numerical Partial Differential Equations)
편미분방정식의수치적인방법들에대하여공부한다. Finite difference methods for elliptic,
hyperbolic and parabolic partial differential equations; Stability, convergence, and error
analysis, Introduction to finite element methods.
 
21602858 수치적편미분방정식(Numerical Partial Differential Equations)
수치적편미분방정식Ⅰ의내용을계속공부한다.
 
21602854 응용수학방법론(Methods in Applied Mathematics)
이공계분야에많이이용되는수학의부분들을공부한다. 그내용으로는 Matrices and linear
equations, Applied complex analysis and asymptotic approximations, Nonlinear oscillations,
Partial differential equations, Perturbation theory 등이다.
 
21602859 응용수학방법론(Methods in Applied Mathematics)
응용수학방법론Ⅰ의내용을계속공부한다.
 
21602838 조합론(Combinatorics)
이산수학에서배운조합론의내용을깊이있고다양하게공부한다. 그내용으로는 Counting
Methods. Generating Functions and its applications, Recurrence relations, Polya's theory,
Ramsey theory, Design theory, Coding theory 등이다.
 
21602860 조합론(Combinatorics)
조합론Ⅰ에서배운내용을계속공부한다.
 
21602861 그래프이론(Graph Theory)
그래프이론을심도있게공부한다. 그내용으로는 Connentedness, Coloring Problems, Eulerian
circuits, Hamiltonian circuits, Matching and covering, Networks, Optimization problems for
graphs 등이다.
 
21602875 그래프이론(Graph Theory)
그래프이론Ⅰ에서배운내용을계속공부한다.
 
21602862 코딩이론(Coding Theory)
정보통신의근간이되는 data를효율적으로전달하는방법에대해공부한다. Design theory,
Hamming code, Error correcting code, Data compression 등을공부한다.
 
21602863 코딩이론(Coding Theory )
현재활발하게연구가진행되고있는암호론의이용과그응용에대하여공부한다. 그내용
으로는 Number theory, Finite fields, Some simple cryptography, Public key system, Primality
and factoring, Continued fraction method. Elliptic curve cryptosystems 등이다.
 
21602864 수리물리학(Mathematical Physics)
물리현상들의분석에응용되는수학적인방법들을공부한다. 그내용으로는 Application of
differential equations, Sturm-Liouville theory and special functions, Application of differential
geometry to mechanics, Complex analysis, Group theory, Matrix theory 등이다.
 
21602865 수리물리학(Mathematical Physics)
수리물리학Ⅰ에서배운내용을심도있게공부한다.
 
21602866 응용수학특강(Topics in Applied Mathematics)
응용수학분야의최근이론들을선정하여공부한다.
 
21602867 응용수학특강(Topics in Applied Mathematics)
응용수학특강Ⅰ에서배운내용을심도있게공부한다.
 
21602868 응용수학특강(Topics in Applied Mathematics)
응용수학특강Ⅱ의계속과정.
 
21602869 응용수학특강(Topics in Applied Mathematics)
응용수학특강Ⅲ의계속과정.
 
21602870 응용수학세미나(Seminar in Applied Mathematics)
학위논문작성을위하여논문의주제와관련되는분야의연구한다.
 
21602871 응용수학세미나(Seminar in Applied Mathematics)
응용수학세미나Ⅰ의계속과정.
인쇄
최종수정일 :
2013.05.06